Fibronectin matrix polymerization increases tensile strength of model tissue.

نویسندگان

  • Candace D Gildner
  • Amy L Lerner
  • Denise C Hocking
چکیده

The composition and organization of the extracellular matrix (ECM) contribute to the mechanical properties of tissues. The polymerization of fibronectin into the ECM increases actin organization and regulates the composition of the ECM. In this study, we examined the ability of cell-dependent fibronectin matrix polymerization to affect the tensile properties of an established tissue model. Our data indicate that fibronectin polymerization increases the ultimate strength and toughness, but not the stiffness, of collagen biogels. A fragment of fibronectin that stimulates mechanical tension generation by cells, but is not incorporated into ECM fibrils, did not increase the tensile properties, suggesting that changes in actin organization in the absence of fibronectin fibril formation are not sufficient to increase tensile strength. The actin cytoskeleton was needed to initiate the fibronectin-induced increases in the mechanical properties. However, once fibronectin-treated collagen biogels were fully contracted, the actin cytoskeleton no longer contributed to the tensile strength. These data indicate that fibronectin polymerization plays a significant role in determining the mechanical strength of collagen biogels and suggest a novel mechanism by which fibronectin can be used to enhance the mechanical performance of artificial tissue constructs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Tensile Characteristics of an Epoxy Matrix Com-posite with Uni-Directional and Hybrid Tissue Natural Hemp Fibers

Using natural hemp fibers to reinforce the tensile characteristics of polymer matrix composites is investigated in this article. The fibers were applied to the epoxy matrix in unidirectional and hybrid tissue forms. After preparation of standard tensile stress test specimens via manual layup, the standard tensile test was done.  Young’s modulus, ultimate tensile stress, and the amount of absorb...

متن کامل

Stimulation of integrin-mediated cell contractility by fibronectin polymerization.

Ligation of integrins with extracellular matrix molecules induces the clustering of actin and actin-binding proteins to focal adhesions, which serves to mechanically couple the matrix with the cytoskeleton. During wound healing and development, matrix deposition and remodeling may impart additional tensile forces that modulate integrin-mediated cell functions, including cell migration and proli...

متن کامل

اهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری

Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...

متن کامل

Effect of Conventional and Experimental Gingival Retraction Solutions on the Tensile Strength and Inhibition of Polymerization of Four Types of Impression Materials

In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experime...

متن کامل

A Facile Route to Synthesize Nanographene Reinforced PBO Composites Fiber via in Situ Polymerization

The polymer matrix with introduced carbon-based nanofiber displays fascinating properties. They have inspired extensive research on the synthesis of polymer composites, which have been applied in catalysis, electronics, and energy storage. In this report, we reported a facile and efficient method to prepare poly(p-phenylene benzobisoxazole) (PBO)/nanographene (PNG) composites fibers via in-situ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 1  شماره 

صفحات  -

تاریخ انتشار 2004